Studies of isolated global brain ischaemia: III. Influence of pulsatile flow during cerebral perfusion and its link to consistent full neurological recovery with controlled reperfusion following 30 min of global brain ischaemia.

نویسندگان

  • Bradley S Allen
  • Yoshihiro Ko
  • Gerald D Buckberg
  • Zhong Tan
چکیده

OBJECTIVE Brain damage is universal in the rare survivor of unwitnessed cardiac arrest. Non-pulsatile-controlled cerebral reperfusion offsets this damage, but may simultaneously cause brain oedema when delivered at the required the high mean perfusion pressure. This study analyses pulsatile perfusion first in control pigs and then using controlled reperfusion after prolonged normothermic brain ischaemia (simulating unwitnessed arrest) to determine if it might provide a better method of delivery for brain reperfusion. METHODS Initial baseline studies during isolated brain perfusion in 12 pigs (six non-pulsatile and six pulsatile) examined high (750 cc/min) then low (450 cc/min) fixed flow before and after transient (30 s) ischaemia, while measuring brain vascular resistance and oxygen metabolism. Twelve subsequent pigs underwent 30 min of normothermic global brain ischaemia followed by either uncontrolled reperfusion with regular blood (n = 6) or pulsatile-controlled reperfusion (n = 6) before unclamping brain inflow vessels. Functional neurological deficit score (NDS; score: 0, normal; 500, brain death) was evaluated 24 h post-reperfusion. RESULTS High baseline flow rates with pulsatile and non-pulsatile perfusion before and after transient ischaemia maintained normal arterial pressures (90-100 mmHg), surface oxygen levels IN Vivo Optical Spectroscopy (INVOS) and oxygen uptake. In contrast, oxygen uptake fell after 30 s ischaemia at 450 cc/min non-pulsatile flow, but improved following pulsatile perfusion, despite its delivery at lower mean cerebral pressure. Uncontrolled (normal blood) reperfusion after 30 min of prolonged ischaemia, caused negligible INVOS O(2) uptake (<10-15%), raised conjugated dienes (CD; 1.75 ± 0.15 A(233 mn)), one early death, multiple seizures, high NDS (243 ± 16) and extensive cerebral infarcts (2,3,5-triphenyl tetrazolium chloride stain) and oedema (84.1 ± 0.6%). Conversely, pulsatile-controlled reperfusion pigs exhibited normal O(2) uptake, low CD levels (1.31 ± 0.07 A(233 mn); P < 0.01 versus uncontrolled reperfusion), no seizures and a low NDS (32 ± 14; P < 0.001 versus uncontrolled reperfusion); three showed complete recovery (NDS = 0) and all could sit and eat. Post-mortem brain oedema was minimal (81.1 ± 0.5; P < 0.001 versus uncontrolled reperfusion) and no infarctions occurred. CONCLUSIONS Pulsatile perfusion lowers cerebral vascular resistance and improves global O(2) uptake to potentially offset post-ischaemic oedema following high-pressure reperfusion. The irreversible functional and anatomic damage that followed uncontrolled reperfusion after a 30-min warm global brain ischaemia interval was reversed by pulsatile-controlled reperfusion, as its delivery resulted in consistent near complete neurological recovery and absent brain infarction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of isolated global brain ischaemia: I. A new large animal model of global brain ischaemia and its baseline perfusion studies.

OBJECTIVES Neurological injury after global brain ischaemia (i.e. sudden death) remains problematic, despite improving cardiac survival. Unfortunately, sudden death models introduce unwanted variables for studying the brain because of multiple organ injury. To circumvent this, a new minimally invasive large animal model of isolated global brain ischaemia, together with baseline perfusion studie...

متن کامل

The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia

BACKGROUND Neuroprotective strategies after cardiopulmonary resuscitation are currently the focus of experimental and clinical research. Levosimendan has been proposed as a promising drug candidate because of its cardioprotective properties, improved haemodynamic effects in vivo and reduced traumatic brain injury in vitro. The effects of levosimendan on brain metabolism during and after ischaem...

متن کامل

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2012